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1 INTRODUCTION

The probability of win is a very important parameter in any attempt to un-
derstand how well the various pairing algorithms perform, or how well a rating
system measures a players strength, or how effective a tie-break is in ranking
players. The game of Go is unique in that its handicapping system provides
players with a built-in measure of relative strength. Although the grades of
players assigned via club and tournament play are by no means precise, they do
form a good starting point as is evidenced by the broadly linear relation that
is seen in E.G.D’s [1] correlation [2] of player’s (more accurate) ratings [3] with
grade.

The E.G.D system collects the win:games ratio for even games between players
of different grades in every tournament [4]. This win ratio data is published
for grade differences between 1 and 4 stones, and has now been collected for 14
years and includes half a million games.

The purpose of this article is to develop a model Pwin for the probability of
win between players of any strength and not just the integral grade differences
necessarily collected by the system.
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Figure 1: Raw data for the probability of win.

The above plot represents grade in zero shodan units, and the labels Pd identify
the data for probability of win against a player d stones stronger when d > 0,
or d stones weaker when d < 0. It shows that the measured probability of win
is fairly well organised from about 12 kyu upwards, but below that the data
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would not easily be modelled. However, players below 12 kyu contribute less
than 15% of of the total games to the statistics, and this is taken into account
in the model.

In the next section we develop the general properties required of Pwin leading to
a clear statement of the form of the model. Subsequent sections deal with the
the fitting procedure and the stability of Pwin over time. In the final sections
we present a graphical rendition of the probability of win between players of
any rating and indicate some of the future work flowing from this presentation.

2 GENERAL PROPERTIES

In this discussion we assume that games between players are even (no handicap)
and result in either a win or a loss, so there are no drawn (jigo) games. E.G.D
publishes the win ratio W (r, d) for games between players with grades r and
s = r + d, where d = 1 · · · 4, and the weaker player wins. As is evident from
figure 1 there is missing data for games against 8 dan players. We do have
games for players beating 7 dan players, so we are able to extend the E.G.D
data to the case where 7 dan (or below) beat weaker players. The following
shows how the extension is obtained.

Let a player’s score be 1 for a win, and 0 for a loss. Define P γ(r, s) to be the
probability distribution for a player with grade r scoring γ and the player’s
opponent with grade s scoring 1−γ. In this definition the point (r, s) lies in the
region R covering the extended E.G.D data i.e. R = {(r, s)|r = −20 · · ·6, s =
−20 · · ·6}.

Identifying the win ratio as a probability of win, we have the following properties
for P γ :

P 1(r, r + d) = W (r, d), r = −20 · · ·5, d = 1 · · · 4

P 0(r, s) = 1 − P 1(r, s) (1)

P 1(s, r) = P 0(r, s)

The second property follows from the definition of P γ as a distribution, and the
third from the requirement that a win for s is a loss for r. These properties
show that the distribution P γ(r, s) is specified for all grades in R, except for
the case r = s, where we define P γ(r, r) = 0.5 - the probability of win in an
even game.

We wish to represent a player’s strength as a continuous parameter in the model.
In keeping with the Elo tradition followed by [3], we will base the probability
distribution on the error function erf [5], i.e. we will assume that for all values
of r and s the model has the general form :

p(r, s) ≡ P 1(r, s) = 1
2 [1 − erf(Λ(r, s))] (2)
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The properties expressed in equations (1) together with the reflection symmetry
of erf imply that Λ is antisymmetric in r and s as shown in Appendix A.1. For
the Elo system as used in Chess [6], the function Λ(r, s) = Kd, where K is a
constant and d = s − r. That this model does not apply in the game of Go is
amply demonstrated in figure 1. For example, the data shows clearly that it is
much harder for a 2 dan to beat a 4 dan (P = 22%) than it is for a 4 kyu to
beat a 2 kyu (P = 35%), so the probability of win in Go cannot be governed
by a simple grade difference as Elo implies. Thus Λ needs to be a non-linear
function of r, s and cannot depend on the difference d = s − r alone.

There is one further condition governing the probability p(r, s) (and hence the
form of Λ) that arises from the nature of the game of Go: it is virtually im-
possible for a player to win in an even game against a player 9 stones or more
stronger. Most pairing programs would regard such a pairing as unacceptable,
so it should be difficult to find tournament examples of such games. Teaching
and club game experience however, justify the statement as holding no mat-
ter what the grade of the weaker player is, and so we shall require that p(r, s)
satisfies:

p(r, r + d) ≈ 0

p(r, r − d) ≈ 1 (3)

d ≥ 9

3 DETAILS OF THE MODEL FOR Λ

We can express Λ(r, s) in terms of the probability values p(r, s) by inverting
equation (2) to get:

Λ(r, s) = erf−1(1 − 2p(r, s)) (4)

The graphs displaying the form of Λ(r, d) derived from the E.G.D data by ap-
plying (4) with d = r − s are shown below, and as before, the family of curves
is labelled by the grade difference d. These graphs suggest that each curve has
an exponential shape, so my first numerical experiments to obtain a fit con-
centrated on forms like Λ(r, d) = A + BeKr, where A, B K are functions of d

alone.

These models gave a good starting point, but it soon became clear that for
each d, the curvature in the exponential function does not grow fast enough to
cope with the accelerating rise in Λ for all grades above shodan. The natural
extension is to consider further exponential terms forming a series:

Λ(r, d) = B0 + B1e
Kr + B2e

2Kr + B3e
3Kr + · · · ,

where all the coefficients depend on d only.

This improved the fit to each individual curve further, and the surprise was that
the value of K did not vary much with d at all, so it is appropriate to regard K

as a fixed constant independent of both r and d. No more than the third order
in the exponential series was needed.
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This suggests that for the case r < s the model for Λ should take the form:

Λ(r, s) =
3

∑

n=0

Hn(s − r)enKr

Since Λ is antisymmetric, this implies that for r > s

Λ(r, s) = −Λ(s, r) =

3
∑

n=0

−Hn(r − s)enKs
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Figure 2: Graph of Λ derived from win ratios.

We can construct the antisymmetric function hn(x) from Hn(x) by:

hn(x) = Hn(x), x > 0

= −Hn(−x), x < 0

= 0, x = 0

Observing that r = min(r, s) when r < s and that s = min(r, s) when r > s,
the exponential terms simplify, and we arrive at the following single expression
for the model:

Λ(r, s) =

3
∑

n=0

hn(s − r)en K min(r,s) (5)
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A suitable form for the functions hn is

hn(x) = unx + vnx3, n = 0 · · · 3, (6)

where un and vn are positive constants specifying monotonic increasing cubics.
This guarantees antisymmetry and helps to ensure that |Λ| is large when |d| > 9
as required by the properties expressed in equations (3).

4 THE FITTING ALGORITHM

We use a weighted, non-linear least squares method for finding the parameters
in the model for Λ presented in the previous section. It is convenient to imple-
ment the fitting procedure in the (r,d) co-ordinate system. The function to be
minimised is:

F (q) =

6
∑

ri=−20

4
∑

dj=−4

wri
[Λ(ri, dj) − Λridj

])2

The model function Λ(r, d) ≡ Λ(r, r + d) is fully specified via equations (5) and
(6). The parameter q bundles all the free variables into one vector:

q = (u0, v0, u1, v1, · · · , K)

The weights are assigned on the basis of player population and grade. We form
the cumulative sum of games played starting from the 20 kyu end:

W (r) =

r
∑

n=−19

4
∑

d=1

G(n, d)

G(r, d) is the count of number of games played between players of grades r and
r+d as published in [4]. The individual weights wr are obtained by normalising
the distribution W (r) so that its maximum value is 1. Note that we ignore
the data for 20 kyu players in the fitting procedure because this group contains
other players whose grades are below 20 kyu.

The minimisation of F is carried out using the conjugate gradient algorithm
[7]. Starting from the initial point in the table belowe, the algorithm converges
within 20 cycles to an accuracy of 10−10 in the magnitude of ∇F at the mini-
mum.

u0 v0 u1 u3 K

initial 0.04 0.004 0.1 0.02 0.2
solution 0.0351224 0.00445376 0.156777 0.0164481 0.18818

Table 1: Coefficients for period 2001 to 2010.
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A good fit was obtained ignoring the free variables v1,u2, v2, and v3. Firstly
v1 and v3 were usually small, and secondly u2, v2 produced negative values for
some years, leading to unjustified lumps in the model.

Considering only players in the range 12 kyu to 7 dan, the rms error between
the measured win ratios and the computed probability of win is less than 0.02,
for each value of d = 1 · · · 4. A shodan has a probability of win against a 9 dan
of 3.6 × 10−15 and against a 9 kyu of 1 − 1.5 × 10−5.

The coefficients shown in table 1 were obtained for the winning statistics data
covering the period January 2001 to December 2010. These coefficients are used
to generate the families of Pwin and Λ curves displayed in figures 1 and 2.

5 STABILITY OF THE MODEL OVER TIME

The measured win ratios change over time, but it is expected that these will
settle down to a constant value over a long enough time period. The E.G.D
system makes available winning statistics for even games over any specified time
period. Experiments showed that the winning probabilities become reasonably
stable over a 5 year period. It could be misleading simply to gather statistics
from the inception of the system, since this may hide the existence of a long
term variation. In order to expose any such feature we examine the trace of win
ratios gathered for a moving 5 year window since 1996.
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Figure 3: Measured Pwin for 10 kyu (left) and 2 dan (right).

In these graphs, each point is a win ratio gathered over a 5 year time window
ending on New Year’s Eve of the year shown and starting 5 years earlier on
New Year’s day. Traces are shown for winning against players from 4 stones
weaker (trace p−4) to players 4 stones stronger (trace p4). The trace showing
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the greatest variation is p−3 for the 10 kyu player, i.e. winning against 13 kyu
players. The 2 dan players show improved stability, and for all players the
system is reasonably stable from 2006 on.

We next examine the stability of the coefficients for the Λ model in the following
trace produced for the same time periods as in figure 3.
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Figure 4: Trace of coefficients for fit to Λ.

The instability in the coefficients is very much in evidence prior to 2006, espe-
cially in the all important K governing the growth of the exponential terms.
However, the main interest is the behaviour of Pwin computed from the coeffi-
cients, rather than the variation in the coefficients themselves.
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Figure 5: Model Pwin 10 kyu (left) and 2 dan (right).

The traces above show the behaviour of our 10 kyu and 2 dan players resulting
from the calculated Pwin values. Clearly this is much more stable than the
coefficient trace - thanks to the important damping property of erf .
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6 GRAPHICAL PRESENTATION

The antisymmetry of Λ means that it has reflection symmetry about the line
r = s. This suggests that a useful representation of the model comes about by
viewing Pwin referred to axes along and perpendicular to this line. We thus
transform to canonical (g, d) co-ordinates (Appendix A.2) defined by:

g = 1
2 (r + s), d = s − r (7)

r = g − 1
2d, s = g + 1

2d (8)

In the following contour plot of p(g, d) = 1
2 [1 − erf(λ(g, d)], probability is ex-

pressed as a percentage.
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Figure 6: Contour plot of Pwin.

For example, the 95% contour almost passes through the point a with average
grade of 2 (in zero shodan units) and grade difference -4. So the stronger player
has grade 2−(−2) = 5 dan, and beats the weaker player with grade 2+(−2) = 1
dan with 95% probability.

On the other hand, if an 8 kyu plays a 6 kyu, the average grade is -7, the grade
difference is +2, and the nearest contour line passing through the corresponding
point b shows that the probability of a win is close to 40%.
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7 SUMMARY AND CONCLUSION

A model for the probability of win in games between players with arbitrarily
different grades has been developed, and has the following properties:� The model agrees with measured win ratios for players from 12 kyu to

7 dan. The root mean square deviation between calculated and measured
winning probabilities is better than 0.02 for players above 12 kyu.� The model has the property that the extrapolated probability of win for
players with grades more than 9 stones apart yields a value near 0 for the
weaker player and near 1 for the stronger player.� With a 5 year time window for collecting win ratio statistics, we have
shown that the model is stable over the period 2001 to 2010 with no
evidence of any long term trend.� The model has just 5 parameters and is easy to implement. It is especially
useful for the purposes of simulation.

8 FURTHER WORK

Players below 12 kyu

It has not been established why, as seen in figure 1, players below 12 kyu contra-
dict the observation that the stronger you are the harder it is to beat someone
1 stone stronger than you in an even game. The contribution to total games
by players below 12 kyu is about 15% and so it is legitimate to give this data
low weight when fitting for the stronger players. Although the behaviour is
anomalous, it is not totally chaotic, and it is seen over a wide range of time
periods.

Model detail

The general form of the model in equation (5) is a power series. We have
obtained a good fit with the first 4 terms in the series. However when the second
order term n = 2 was included, the solution invariably produced non-negligible
negative coefficients. These cause unjustified lumps in Pwin, and more data
would be needed to justify increasing the model complexity. This issue would
best be resolved by attempting to extract winning probabilities from E.G.D
where the grade difference is 5 stones or more.
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Tie-break analysis

Many tie-breaks have been used in European tournaments, and Herman Hid-
dema [8] has proposed a sound testing method for analysing their effectiveness.
The simulation of tournaments could be carried out using the above model for
the probability of win as it provides a realistic method for generating game
results.

Pairing Algorithms

A player’s measured rating is not completely independent of the algorithm used
for the pairing. The rating change achieved at a tournament depends on the
players strength on the day and on the opponents chosen by the pairing system.

Start with a population of players each with a true strength (equal to grade)
fixed for all time. A simulation of the tournament is carried out computing
results from the Pwin model using the true strengths. At the end of the tour-
nament the ratings of all players are updated according to the E.G.D rules.

After many such tournament simulations, each player will have acquired a mea-
sured rating, which may differ from the true strength. A suitable metric for
measuring the quality of a pairing algorithm is the rms error between the true
and measured ratings.

This gives us a method for comparing the quality of pairing algorithms. In
particular, modern techniques [9], [10] rely on assigning weights to potential
pairings for use in maximum weighted matching algorithms. The assignment
of weights is dependent on a number of parameters, whose values have so far
been determined empirically. We can exploit the Pwin model via the definition
of pairing quality to optimise the parameters determining the weights.
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A ANTISYMMETRY IN THE MODEL

A.1 The function Λ(r, s) is antisymmetric

It follows from the properties expressed in equations (1) that p(s, r) = P 0(r, s),
and consequently:

p(s, r) = 1 − p(r, s)

= 1 − 1
2 [1 − erf(Λ(r, s))]

= 1
2 [1 + erf(Λ(r, s))]

Interchanging r and s and invoking the antisymmetry of erf we see that

p(r, s) = 1
2 [1 − erf(−Λ(s, r))]

It then follows from equation (2) that Λ(r, s) = −Λ(s, r).

A.2 Canonical transform of Λ

On transforming to (g, d) co-ordinates, the definition (5) produces:

Λ(r, s) = Λ(g − 1
2d, g + 1

2d)

=

3
∑

n=0

hn(d)en K min(g−
1
2d,g+

1
2d)

Observing that d = |d| when d > 0, and d = −|d| when d < 0, we see that the
argument in the exponential term simplifies, giving the following expression for
the transformed version of Λ:

Λ̃(g, d) =
3

∑

n=0

hn(d)enK(g−
1
2 |d|) (9)

A.3 Approximation for erf

The following approximation [11] to erf has an accuracy better than 6 × 10−4

erf(x) ≈ tanh(ax + bx3) (10)

a = 1.129324

b = 0.100303

erf−1(x) ≈ d sinh(1
3sinh−1(c tanh−1(x))) (11)

d =
√

4a
3b

= 3.875

c = 3
ad

= 0.6856
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